
Nigeria Statistical Society 
                                         Edited Proceedings of 1st International Conference                                           Vol. 1, 2017 

71 

 

 
© 2017, A Publication of Nigeria Statistical Society 

 

Performance Evaluation of Some Estimators of 
Linear Models with Collinearity and 

Non–Gaussian Error 

W. B. Yahya*; M. K. Garba; A. G. Ajayi¶; K. A. Dauda†; O. R. Olaniran; N. F. Gatta 
 

 

Department of Statistics, 
University of Ilorin, 

Ilorin, Nigeria. 
e-mail: dr.yah2009@ymail.com*; adefemiajayi@ymail.com¶ 

 
†Department of Statistics and Mathematical Sciences, 

Kwara State University,  
Malete, Nigeria 

 
 

Abstract - Among typical challenges in numerous multiple 
linear regression models are those of multicollinearity and 
non–normal disturbances which have created undesirable 
consequences for the ordinary least squares (OLS) estimator 
which is the popular and naïve technique for estimating linear 
models. Thus, it appears so critical to combine strategies for 
estimating regression models in order to muddle through while 
these challenges are present. In this study, the strength of some 
methods of estimating classical linear regression model in the 
presence of multicollinearity and non-normal error structures 
were investigated. The conventional Least Squares (LS), Ridge 
Regression (RR), Weighted Ridge (WR), Robust M-estimation 
(M) and Robust Ridge Regression (RRR) methods taking into 
accounts M-estimation procedures were considered in this 
study. Results from Monte-Carlo study revealed the 
superiority of the RRR estimator over others using Mean 
Squared Errors (MSE) of parameter estimates and Absolute 
Bias (AB) as assessment criteria among others over various 
considerations for the distribution of the disturbance term and 
levels of multicollinearity. The study concluded that whenever 
linear regression modeling is intended and multicollinearity 
among the regressors and non-spherical disturbance structure 
on the response variable are suspected in a data set, the RRR 
estimator should be adopted in order to ensure optimal 
efficiency. 

Keywords: Non-normal disturbances, Collinearity, Robust  

M-estimation, Ridge and Weighted Ridge Regression 
 

I. Introduction 

A regression estimator is said to be “robust” the moment it 
is capable of typically providing parameters estimates that 
are reasonably unbiased and efficient even when one or 

more of the assumptions underlining its usage is not 
completely met. Conversely, a large violation of one or 
more required assumptions might results into poor estimates 
of the parameters which may consequently lead to wrong 
conclusions and inference [1, 2].  

Two major problems are often of paramount concern in 
regression analysis: multicollinearity and non–normal error 
structure.  

Multicollinearity is a case of multiple regression in 
which the predictor variables are themselves highly 
correlated, meaning that one can be linearly predicted from 
the others with a non-trivial degree of accuracy. If there is 
no linear relationship between the regressors, they are said 
to be orthogonal [3]. When the regressors are orthogonal, 
the inferences such as; i.)identifying the relative effects of 
the regressor variables, ii.) prediction and/or estimation, and 
iii.) selection of an appropriate set of variables for the model 
can be easily made. 

Another common problem in regression estimation 
methods is that of non–normal errors. The term simply 
means that the distribution of errors have fatter tails than 
that of the normal distribution. These fat–tailed distributions 
are more prone than the normal distribution to produce 
outliers, or extreme observations in the data [4].  

The Gauss-Markov Theorem says that Ordinary Least 
Squares (OLS) estimates for coefficients are Best Linear 
Unbiased Estimator (BLUE) when the errors are normal and 
homoscedastic. When errors are non-normal, the 'E' 
property of Efficiency will no longer holds for the 
estimators and the standard errors of estimate will be biased.  

The Ordinary Least Squares (OLS) estimators of 
coefficients are known to possess certain optimal properties 
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when explanatory variables are not correlated among 
themselves, and the disturbances of the regression equation 
are independently and identically distributed normal random 
variables. It is not every time we would have ideal situation 
like this. This work examines the effects of non–normal 
error terms on the efficiency of the estimates of the marginal 
regression coefficients in multiple regression modellingThe 
aim of this study is to examine the effect of multicollinearity 
and non-normal error problem. 

II. RESEARCH METHODOLOGY 

A. Model Identification 
The classical multiple linear regression model is defined 

by the equation, 
� = ��� + �� + �                                    (1) 

where, �is a � × 1 vector of observations on the dependent 
variable, �� is an unknown constant, � is a � × � matrix 
consisting of � observations on � variables, � isa � × 1 
vector of unknown regression coefficients, and � is a � × 1 
vector of errors identically and independently distributed 
with mean zero and variance ��. 
 

1. Ordinary Least Squares 

When the matrix �has a full rank of �, the OLS estimator 

����� can be obtained by minimizing the sum of squared 

residuals,  

�̂��̂ = �� − ����
�
�� − ����                    (2) 

hence, 

����� = (���)��(���)                         (3) 

The variance and the Mean Squared Error (MSE) of the 

OLS estimator are given in equation (4) and (5) 

���(��) = (���)����                         (4) 

��� = ���� − ��
�
��� − ��                   (5) 

2. Ridge Regression 

When multicollinearity exists the design matrix is "ill 

conditioned" and invertible. A simple way to guarantee the 

invertibility is adding a constant to the diagonal of matrix 

(���) before estimating the coefficients. Reference [5] and 

[6] proposed the ridge estimator 

�� = (��� + ��)��(���)                � > 0                       (6) 

while k is the biasing parameter that we need to choose. 

Several authors have proposed a number of procedures 

for estimating the value of k. Reference [7] have suggested 

that an appropriate choice of k is  

� =
����

�����
                                                   (7) 

where �� and ��� are obtained from the least squares solution. 

The variance and the mean squared error of the ridge 

estimator are given in (8) and (9) 

���(��) = (��� + ��)�����(��� + ��)����              (8) 

��� = ����� − ��
�
���� − ��                   (9) 

3. M-Estimation 

Robust regression is an important tool for analyzing data 

that are contaminated with outliers. M-estimation introduced 

by [8] is not as vulnerable as least squares to unusual data. 

Consider the linear model in (1), the general M-estimator 

minimizes the objective function, 

� �(��)

�

�� �

= � �(�� − ��
��)

�

�� �

              (10) 

An iterative solution (called iterative reweighted least-

squares, IRLS) is required to obtain the parameter estimates. 

The variance and the mean squared error of the M-

estimator are given in equation (11) and (12) 

The asymptotic covariance matrix of ��  is  

������� =
�(� �)

[�(� �)]�
(���)��              (11) 

using∑ [� (��)]� to estimate �(� �), and ∑ [� �(��)/�]� to 

estimate [�(� �)]� produces the estimated asymptotic 

covariance matrix where � = �� be the derivative of �. 

��� = ����� − ��
�
���� − ��                   (12) 

 

Reference [9] discussed augmented robust estimates as a 

way of combining biased and robust regression techniques. 

This combined procedure is based on the fact that robust 

estimates can be computed using Weighted Least Squares 

procedure. When both outliers and multicollinearity occur in 

a data set, it would be preferred to combine methods for 

dealing with these problems simultaneously. This technique 

was adopted while fitting the robust ridge regression model 

in this work. 

4. Weighted Ridge Estimator (WR) 

Weighted Ridge Estimator���� , can be computed using 

the formula in (13) 

���� = (���� + ��)��(���� )                         (13) 

where �  is a diagonal matrix with diagonal elements � ��. 

The diagonal elements of �  matrix are set equal to:  

� ��= �

1

�̂�

            ���̂� ≠ 0

1               �� �̂� = 0

�                            (14) 

� is determined from the data using: 
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� =
����

�

����
�
����

                                              (15) 

The variance and the mean squared error of weighted 

ridge estimator are given in equation (16) and (17) 

���
� =

�� − ����� �
�
�� − ����� �

� − �
             (16) 

��� = ������ − ��
�
����� − ��                   (17) 

5. Robust Ridge Regression Estimator (RRR) 

The robust ridge regression estimate of the parameter � 

is given by: 

����� = (��� + ��)��(���)                         (18) 

� is determined from the data using: 

� =
���

�

���
�
���

                                              (19) 

where ���  is the estimated parameter vector using the M-

Estimation method. 

The variance and the mean squared error of the robust 

ridge regression estimator are given in equation (20) and (21) 

��
� =

�� − ���� �
�
�� − ���� �

� − �
             (20) 

��� = ������� − ��
�
������ − ��                   (21) 

 

B. Simulation Study 

For the purpose of this study, three sets of predictors � = 

(��,��,��)were simulated from multivariate normal 

distribution.  

Six sample sizes which include; [n = 20, 50, 100, 200, 

500, 1000] were considered to verify the consistency of the 

estimators. One important factor in this study is the 

distribution of the models’ error term. Therefore, the residual 

term �� was simulated from a fat-tailed distribution,the 

Cauchy distribution with median zero and scale parameter 

one other than from the usual normal distribution. 

The response variable � was simulated with the 

relationship given below: 

�� = 25 + 65��� + 15��� + 45��� + �� 

The correlation structure imposed among the three 

predictors is of two forms as presented under Case I and 

Case II below:  

CASE I (No Multicollinearity) 

��� = �
1 0.0005 0.0001

0.0005 1 0.0009
0.0001 0.0009 1

� 

and 

CASE II (Presence of Multicollinearity) 

 

��� = �
1 0.9910 0.9509

0.9910 1 0.9809
0.9509 0.9809 1

� 

 
to capture the two cases of orthogonality (non-correlated 
structure) and the presence of severe collinearity (non-
orthogonality) respectively among the predictors.  
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III. RESULTS 

 
CASE I: The Variance Inflation Factor (VIF) for all the predictors are as follow:  
���(��) = 1.0000; ���(��) = 1.0000; ���(��) = 1.0000 

Error Distribution: Cauchy 

Table 1: Summary of Estimates of Coefficients and Standard Errors at Various Sample Sizes 

Sample 
size 

True 
value 

Least Squares Ridge Weighted Ridge M-Estimator Robust Ridge 
Coef SE Coef SE Coef SE Coef SE Coef SE 

 
n = 20 

β�=25 42.23 5.85 65.63 211.06 16.09 137.09 25.26 9.44 19.05 15.45 

β�=65 64.59 0.27 63.52 7.62 64.96 18.83 64.97 0.45 64.44 4.86 

β�=15 14.40 0.22 14.71 2.85 15.14 10.10 14.99 0.37 15.50 2.93 

β�=45 44.83 0.19 43.96 5.20 45.25 9.65 45.00 0.31 45.16 1.96 

 
n = 50 

β�=25 64.19 26.80 76.95 252.58 16.54 298.22 24.88 4.65 18.36 15.56 

β�=65 64.70 1.26 63.18 8.41 67.10 73.37 65.00 0.21 64.31 6.00 

β�=15 14.46 1.03 14.59 3.28 13.34 74.14 15.00 0.17 15.49 3.48 

β�=45 43.66 0.89 43.68 5.93 45.78 34.12 45.00 0.15 45.12 2.95 

n = 100 

β�=25 29.54 12.28 67.11 206.49 24.98 268.64 25.S01 3.11 18.36 15.68 

β�=65 64.82 0.57 63.40 7.76 64.31 15.16 65.00 0.14 64.44 4.84 

β�=15 14.79 0.47 14.61 3.38 15.17 14.26 14.99 0.11 15.43 3.48 

β�=45 45.00 0.40 43.96 5.41 45.23 8.74 45.00 0.10 45.24 2.52 

n = 200 

β�=25 25.24 20.50 69.13 212.38 10.50 1003.29 25.00 2.06 18.02 15.81 

β�=65 65.73 0.96 63.40 7.74 65.84 65.43 64.99 0.10 64.45 4.96 

β�=15 15.17 0.78 14.76 2.85 15.98 58.00 15.00 0.08 15.63 3.76 

β�=45 44.55 0.68 43.82 5.40 45.01 27.82 44.99 0.06 45.11 2.58 
 

Table 2: Mean Square Error of the estimators considered for non-normal disturbances problem 

Sample 
size 

OLS Ridge 
Weighted 

Ridge 
M -

Estimator 
Robust RR 

20 77988.4306 11568.1473 40.3088 22.4051 0.3960 

50 954096.0362 16647.0311 27.7816 5.4475 9.6257 

100 46585.9499 11124.3117 398.0189 2.4362 6.8527 

200 11766.5161 11783.7524 19.8095 1.0661 4.2687 

500 19429.5031 10246.5889 108.0036 0.4216 10.0263 

1000 75786.3191 11167.8509 538.9687 0.1979 1.3369 
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CASE II: The Variance Inflation Factor (VIF) for all the predictors are as follow:  

���(��) = 164.0718; ���(��) = 416.9834; ���(��) = 78.0039 

 
Error Distribution: Cauchy 

Table 3: Summary of Estimates of Coefficients and Standard Errors at Various Sample Size 

Sample 
size 

True 
value 

Least Squares 
Ridge 

Regression 
Weighted Ridge M-Estimator Robust Ridge 

Coef SE Coef SE Coef SE Coef SE Coef SE 
 

n = 20 
β

�
=25 49.49 152.51 47.32 15.57 15.80 312.61 15.57 15.80 24.71 9.61 

β
�
=65 42.54 95.61 56.66 56.62 12.91 256.00 56.62 12.91 64.96 5.90 

β
�
=15 49.67 124.21 25.01 24.17 14.01 348.60  24.17 14.01 15.06 7.67 

β
�
=45 28.97 46.52 40.51 42.59 6.33 142.62 42.59 6.33 44.97 2.89 

            
 

n = 50 
β

�
=25 23.64 12.51 48.26 15.40 15.44 1070.22 15.40 15.44 24.93 4.49 

β
�
=65 59.18 7.84 56.51 56.59 12.57 659.26 56.59 12.57 65.05 2.76 

β
�
=15 23.80 10.19 25.23 24.41 14.00 721.30 24.41 14.00 14.93 3.58 

β
�
=45 41.39 3.81 40.43 42.55 6.06 174.24 42.55 6.06 45.02 1.33 

            
n = 100 β

�
=25 13.71 5.54 42.25 151.56 2.44 822.40 15.87 16.08 25.01 3.01 

 β
�
=65 56.90 3.47 56.70 9.96 55.49 391.08 56.90 12.17 65.02 1.85 

 β
�
=15 27.61 4.51 25.27 10.56 31.15 434.26 24.04 13.77 14.97 2.39 

 β
�
=45 40.17 1.69 40.60 6.44 38.50 241.57 42.68 6.17 45.00 0.89 

            
n = 200 β

�
=25 14.68 14.50 49.12 177.18 21.13 599.28 15.70 15.90 24.98 1.99 

 β
�
=65 57.49 9.09 56.44 10.76 66.13 362.45 56.58 12.75 64.96 1.26 

 β
�
=15 24.59 11.81 25.13 10.76 13.60 453.08 24.18 13.86 15.05 1.64 

 β
�
=45 42.09 4.42 40.49 6.89 45.70 158.37 42.75 6.21 44.97 0.61 

                      
n = 500 β

�
=25 49.36 6.86 44.16 177.24 3.07 2536.91 15.96 16.08 25.00 1.20 

 β
�
=65 84.28 4.30 56.76 10.34 82.29 1381.72 56.93 12.75 65.00 0.77 

 β
�
=15 -10.60 5.59 25.08 10.87 -16.01 1486.49 23.96 14.18 15.00 0.99 

 β
�
=45 53.39 2.09 40.64 6.53 60.02 544.96 42.68 6.37 44.99 0.37 

                      
n = 1000 β

�
=25 50.49 8.27 40.06 151.17 147.41 6141.39 15.43 16.45 25.00 0.88 

 β
�
=65 88.19 5.18 56.53 10.44 161.74 4535.72 56.83 12.82 65.00 0.54 

 β
�
=15 -16.10 6.74 25.12 10.76 -100.28 5484.48 23.74 13.79 14.99 0.71 

 β
�
=45 55.41 2.52 40.84 6.33 76.59 1541.79 42.89 6.42 45.00 0.26 

            
 
.  
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Table 4: Mean Square Error of the estimators considered

Sample 
size 

OLS Ridge WR 
M -

Estimator 
RRR 

20 1014136.55 8736.668 468.188 268.4810 48.6734 
50 64818.957 8652.708 208.970 80.6441 10.6160 

100 175584.95 5926.600 877.894 65.8274 4.7518 
200 111942.05 8109.838 54.4042 22.1353 2.1653 
500 1219251.7 8056.371 1358.47 11.5062 0.7986 

1000 733579.61 5881.709 230.192 9.9903 0.4148 
 

I. Discussions 

When the model is suffering from only the problem of 
non-normal error without collinear predictors, M-estimator 
provided good estimates of the regression parameters than 
any of the other estimators considered as shown in Table 1. 
Indeed, the results in Table 1 showed that the estimated 
parameter values by the M-estimator converge to their true 
values as the sample sizes become large. 

Results in Table 2 further showed the superiority of M-
estimator, with the least MSEs) over others as the sample 
sizes become large. This simply indicates the relative 
consistency of the M-estimator compared to other estimators 
considered in this study. Among all the estimators 
considered in this study, the performance of OLS was the 
worst based on MSE. Robust M-estimation is more efficient 
than other estimator considered when the error term is not 
Gaussian. 

In the presence of the twin problems of collinearity and 
non-Gaussian error, the results from Table 3 showed that the 
Robust Ridge Regression (RRR) estimator provided 
regression estimates that are quite close to the true 
parameters values than any other estimators considered. The 
poor performance of other estimators was majorly due to the 
effects of collinearity and non-normal error structure 
imposed on the model, and unlike others, the Robust ridge 
estimator is robust to the twin problems of collinearity and 
deviation from Gaussian errors.  

It can generally be observed from the results in Table 3 
that as the sample sizes become large, the result obtained 
from Robust Ridge Regression based on M-estimation 
converges to the true parameter values with relatively 
smaller standard error of estimates when compared to other 
estimators. 

In term of the Mean Square Error (MSE), it can be 
observed from the results in Table 4 that the Robust Ridge 
Regression yielded the least MSE at all the chosen sample 
sizes while its MSEs monotonically tend towards zero as the 
sample sizes become large. This performance level of RRR 
underscores its relative consistency compared to other 
estimators considered in this study. 

 
 

V. Conclusion 

In this study, a simple way of modelling collinear data in 
the presence of twin problems of multicollinearity and non–
normal error using Monte Carlo simulation approach is 
presented. Results from Monte-Carlo study revealed the 
superiority of the Robust Ridge Regression (RRR) estimator 
over others based on Mean Squared Errors of parameter 
estimates and Absolute Bias as assessment criteria among 
others.  

Finally, the consequence of collinearity in the presence of 
non-normal error is more severe compared to when the   
error distribution is normal. 
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